Stainless Steel Fasteners: T304 vs T316 vs T410

Choosing the Right Stainless Steel Fastener

Stainless steel fasteners are a top choice for construction, engineering, and industrial projects thanks to their corrosion resistance, durability, and strength. However, not all stainless steels are the same. Understanding the differences between 304, 316, and 410 grades is critical for selecting the right fastener for your environment and application.

Key Composition Differences

Stainless steel, an alloy of iron with at least 10.5% chromium, is prized for its strength, corrosion resistance and long service life. Alloying elements such as nickel and molybdenum improve strength and performance, making it viable for engineering, marine and architectural applications.

One of the differences between T304 and T316 stainless steel is the addition of molybdenum in 316, which in combination with chromium provides superior protection against chlorides, saltwater, and harsh chemicals. This makes T316 the better choice in corrosive or coastal conditions, while 304 is a cost-effective solution for general-purpose use.

Nickel is a critical alloying element in stainless steel, particularly in austenitic grades like T304 and T316. It plays a major role in shaping the steel's structure, corrosion resistance, and formability and has good wear resistance. Grades like T316 (which contains ~10-14% nickel) are more expensive than T304 (with \sim 8%) and T410 ((\sim 0.75%) due to both the increased nickel content and the addition of molybdenum.

T410 has higher carbon content which acts as a strengthening element, allowing 410 stainless steel to be hardened through heat treatment for better wear resistance. Due to its higher hardness after heat treatment, 410 stainless steel fasteners offer enhanced abrasion and impact resistance. This is especially beneficial in environments where fasteners may experience friction, movement, or physical contact.

Version No.: 251017

Composition

Feature 3	316 Stainless Steel	304 Stainless Steel	410 Stainless Steel
Chromium	~16–18%	~18%	~11.5–13.5%
Nickel	~10–14%	~8%	Low (~0.75%)
Molybdenum	~2–3%	No	No
Carbon	Low (~0.08%)	Low (~0.08%)	Higher (~0.15%)
Magnetic	Non-magnetic	Non-magnetic	Magnetic

Comparison of key properties

Feature	316 Stainless Steel	304 Stainless Steel	410 Stainless Steel
Corrosion Resistance	Superior resistance to chlorides, saltwater, and harsh acids due to the addition of molybdenum	Excellent overall resistance, but susceptible to pitting and crevice corrosion in chloride and saltwater environments	Moderate – less corrosion resistant; suitable for dry indoor use
Cost	More expensive, typically 20–30% higher, because of the higher nickel content and added molybdenum	More economical and widely available	Lower than 304 and 316, but varies based on application
Application	Marine environments, chemical processing, medical equipment, and other applications with exposure to harsh chemicals	General-purpose use, including kitchen equipment, sinks, food and beverage processing, and architectural trim	Dry interior use, self-drilling screws, high-strength applications
Heat Resistance	Slightly better resistance to oxidation and scaling at high temperatures	Good heat resistance	Limited – can lose corrosion resistance at elevated temperatures
Strength and Hardness	Generally stronger, with higher tensile and yield strength, due to the molybdenum content	Good strength, though can be hardened by cold working	High hardness and strength - can be heat treated for wear resistance

Which stainless steel should you choose?

The right stainless steel fastener depends on your environment, load requirements, and exposure conditions.

Use 316 Stainless Steel when corrosion resistance is critical	Use 304 Stainless Steel for more general cost-effective applications	Use 410 Stainless Steel when strength and hardness are the priority
Marine and coastal environments — ideal for	Indoor and sheltered outdoor environments	★ Self-drilling and self-tapping screws — excellent for
saltwater exposure; resists pitting and tea-staining Chemical and industrial	 Furniture, kitchens, and architectural hardware Projects where cost-efficiency is a key factor Dry, inland construction or DIY projects 	 penetrating steel and timber Interior structural fixings where corrosion exposure is minimal
processing — withstands acids and harsh chemicals		 Applications requiring wear resistance and high mechanica strength
equipment — hygienic and easy to clean		 Ideal for environments that are dry or low in humidity, such
Submerged or consistently high-moisture environments		as workshops or machinery assembly

Version No.: 251017

Fastener-Specific Considerations

Galling:

Both 304 and 316 stainless steels are prone to galling under pressure or high-speed installation. Use lubricants, reduce driving speed, or mix grades (e.g., 304 bolt with 316 nut) to reduce risk.

410 Stainless Steel

is less prone to galling due to its harder composition but is also more brittle-avoid overtorquing during installation.

Mixing Grades:

Can be acceptable in low-corrosion environments, but monitor carefully to avoid galvanic corrosion between dissimilar alloys.

Surface Finish:

A polished or passivated finish enhances corrosion resistance across all stainless grades, particularly in exposed environments.

Summary

- Choose 316 when working in coastal, marine, chemical, or wet conditions where high corrosion resistance is critical.
- Choose 304 for general use, where cost efficiency and reliable corrosion resistance are needed in non-aggressive environments.
- Choose 410 for applications requiring hardness and high strength such as selfdrilling screws or fasteners going into steel best used in dry or protected environments due to its lower corrosion resistance.
- Always consider the location, moisture exposure, load-bearing needs, and risk of corrosion when specifying stainless steel. fasteners for your application.

The data provided in this document is for general guidance only and should not be solely relied upon when working to stringent specifications. We recommend consulting with qualified experts regarding any technical queries. This information may change without written notice.

